Skip to content

Deep Q-Learning (DQN)

Overview

As an extension of the Q-learning, DQN's main technical contribution is the use of replay buffer and target network, both of which would help improve the stability of the algorithm.

Original papers:

Implemented Variants

Variants Implemented Description
dqn.py, docs For classic control tasks like CartPole-v1.
dqn_atari.py, docs For playing Atari games. It uses convolutional layers and common atari-based pre-processing techniques.

Below are our single-file implementations of DQN:

dqn.py

The dqn.py has the following features:

  • Works with the Box observation space of low-level features
  • Works with the Discrete action space
  • Works with envs like CartPole-v1

Implementation details

dqn.py includes the 11 core implementation details:

dqn_atari.py

The dqn_atari.py has the following features:

  • For playing Atari games. It uses convolutional layers and common atari-based pre-processing techniques.
  • Works with the Atari's pixel Box observation space of shape (210, 160, 3)
  • Works with the Discrete action space

Usage

poetry install -E atari
python cleanrl/dqn_atari.py --env-id BreakoutNoFrameskip-v4
python cleanrl/dqn_atari.py --env-id PongNoFrameskip-v4

Implementation details

dqn_atari.py is based on (Mnih et al., 2015)1 but presents a few implementation differences:

  1. dqn_atari.py use slightly different hyperparameters. Specifically,
    • dqn_atari.py uses the more popular Adam Optimizer with the --learning-rate=1e-4 as follows:
      optim.Adam(q_network.parameters(), lr=1e-4)
      
      whereas (Mnih et al., 2015)1 (Exntended Data Table 1) uses the RMSProp optimizer with --learning-rate=2.5e-4, gradient momentum 0.95, squared gradient momentum 0.95, and min squared gradient 0.01 as follows:
      optim.RMSprop(
          q_network.parameters(),
          lr=2.5e-4,
          momentum=0.95,
          # ... PyTorch's RMSprop does not directly support
          # squared gradient momentum and min squared gradient
          # so we are not sure what to put here.
      )
      
    • dqn_atari.py uses --learning-starts=80000 whereas (Mnih et al., 2015)1 (Exntended Data Table 1) uses --learning-starts=50000.
    • dqn_atari.py uses --target-network-frequency=1000 whereas (Mnih et al., 2015)1 (Exntended Data Table 1) uses --learning-starts=10000.
    • dqn_atari.py uses --total-timesteps=10000000 (i.e., 10M timesteps = 40M frames because of frame-skipping) whereas (Mnih et al., 2015)1 uses --total-timesteps=50000000 (i.e., 50M timesteps = 200M frames) (See "Training details" under "METHODS" on page 6 and the related source code run_gpu#L32, dqn/train_agent.lua#L81-L82, and dqn/train_agent.lua#L165-L169).
    • dqn_atari.py uses --end-e=0.01 (the final exploration epsilon) whereas (Mnih et al., 2015)1 (Exntended Data Table 1) uses --end-e=0.1.
    • dqn_atari.py uses --exploration-fraction=0.1 whereas (Mnih et al., 2015)1 (Exntended Data Table 1) uses --exploration-fraction=0.02 (all corresponds to 250000 steps or 1M frames being the frame that epsilon is annealed to --end-e=0.1 ).
    • dqn_atari.py treats termination and truncation the same way due to the gym interface2 whereas (Mnih et al., 2015)1 correctly handles truncation.
  2. dqn_atari.py use a self-contained evaluation scheme: dqn_atari.py reports the episodic returns obtained throughout training, whereas (Mnih et al., 2015)1 is trained with --end-e=0.1 but reported episodic returns using a separate evaluation process with --end-e=0.01 (See "Evaluation procedure" under "METHODS" on page 6).
  3. dqn_atari.py rescales the gradient so that the norm of the parameters does not exceed 0.5 like done in PPO ( ppo2/model.py#L102-L108).

Experiment results

PR vwxyzjn/cleanrl#124 tracks our effort to conduct experiments, and the reprodudction instructions can be found at vwxyzjn/cleanrl/benchmark/dqn.

Below are the average episodic returns for dqn_atari.py.

Environment dqn_atari.py 10M steps (Mnih et al., 2015)1 50M steps (Hessel et al., 2017, Figure 5)3
BreakoutNoFrameskip-v4 337.64 ± 69.47 401.2 ± 26.9 ~230 at 10M steps, ~300 at 50M steps
PongNoFrameskip-v4 20.293 ± 0.37 18.9 ± 1.3 ~20 10M steps, ~20 at 50M steps
BeamRiderNoFrameskip-v4 6207.41 ± 1019.96 6846 ± 1619 ~6000 10M steps, ~7000 at 50M steps

Learning curves:

Tracked experiments and game play videos:


  1. Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015). https://doi.org/10.1038/nature14236 

  2. [Proposal] Formal API handling of truncation vs termination. https://github.com/openai/gym/issues/2510 

  3. Hessel, M., Modayil, J., Hasselt, H.V., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M.G., & Silver, D. (2018). Rainbow: Combining Improvements in Deep Reinforcement Learning. AAAI. 

Back to top